
PHYSICAL REVIEW E OCTOBER 1998VOLUME 58, NUMBER 4
Surface flows of granular materials: A modified picture for thick avalanches

Thomas Boutreux, Elie Raphae¨l, and Pierre-Gilles de Gennes
Collège de France, 11 Place M. Berthelot, 75231 Paris Cedex 05, France

~Received 18 March 1998!

Some time ago, Bouchaudet al. @J. Phys. I4, 1383 ~1994!# proposed a basic set of equations to describe
surface flows. They assumed in particular that the rate of erosion~or accretion, depending on the slope! was
proportional to the local amountR of rolling species. This is natural for thin avalanches, but not for thick
avalanches. We discuss here the thick limit and assume that forR@d ~the grain diameter! the rates become
independent ofR. This leads to some different features:~i! filling of a silo, for which the steady-state slope is
a ~decreasing! function of the feeding rate;~ii ! avalanches with a sink at the bottom end~‘‘open cells’’!, for
which the profile starts at a certain angleumax and ends at the neutral angleun , whereun is the angle at which
erosion balances accretion and is smaller thanumax (un5umax2d); and ~iii ! avalanches with a closed end
~where the flow stops!, for which the angle of repose isnot un but un2d5umax22d. Each avalanche involves
a cascade of successive regimes that are described analytically.@S1063-651X~98!03910-5#

PACS number~s!: 83.10.Hh
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I. GENERAL PRINCIPLES

A. Onset of avalanches

When constructing Fort Bourbon, Coulomb~who was at
the time a military engineer! noticed that a granular system
with a slope angleu larger than a critical valueumax, would
be unstable. He related the angleumax to the friction proper-
ties of the material. For granular materials, with negligib
adhesive forces, the simple argument of Fig. 1 leads
tanumax5m, wherem is a friction coefficient@1#. The insta-
bility generates an avalanche. Our aim, in the present pa
is to propose a detailed scenario for the avalanche.

We note first that the Coulomb argument is not comple
~a! It does not tell us at what angleumax1« the process will
actually start and~b! it does not tell us which gliding plane i
preferred~among those of angleumax! as shown in Fig. 1.
We shall propose an answer to these questions based o
notion of a characteristic mesh sizej in the granular mate-
rial.

Simulations@2,3# and experiments@4# indicate that the
forces are not uniform in a granular medium, but that th
are force paths conveying a large fraction of the force. Th
paths have a certain mesh sizej that is dependent of the
grain shapes, the friction forces between them, etc., bu
typically j;5 – 10 grain diameterd.

We also know that, under strong shear, a granular m
rial can displayslip bands@5#. The detailed geometry o
these bands depends on the imposed boundary condit
However, the minimum size of a slip band appears to
larger thand. We postulate that the minimum sizecoincides
with the mesh sizej.

We are then able to make a plausible prediction for
onset of the Coulomb process: The thickness of the ex
layer must be of orderj and the excess angle« must be of
orderj/L, whereL is the size of the free surface. Thus, at t
moment of onset, our picture is that a layer of thickness;j
starts to slip. It shall then undergo various processes:~i! It
shall be fluidized by the collisions on the underlying he
and~ii ! it shall be amplified because the rolling grains des
bilize some other grains below. The steady-state flow
PRE 581063-651X/98/58~4!/4692~9!/$15.00
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been studied in detailed simulations@6#. It shows a sharp
boundary between rolling grains and immobile grains: T
is the starting point of sharp boundary between rolling gra
and immobile grains and the starting point of most curr
theories.

The amplification process was considered in some de
by Bouchaud, Cates, Ravi Prakash, and Edwards~BCRE! in
a classic paper of 1994@7,8#. It is important to realize that, if
we start with a thicknessj of rolling species, we rapidly
reach much larger thicknessesR. In practice, with macro-
scopic samples, we deal withthick avalanches(R@j). We
are mainly interested in these regimes, which will in fact tu
out to be relatively simple.

B. BCRE’s modified equations

BCRE discuss surface flows on a pile of profileh(x,t)
and local slope tanu>u5]h/]x, with a certain amount
R(x,t) of rolling species~Fig. 2!. In Ref. @7# the evolution
equation for the profileh(x,t) is written in the form

]h

]t
5gR~un2u!1~diffusion terms!, ~1!

whereg is a characteristic frequency and the angleun is a
constant. This gives erosion foru.un and accretion foru
,un . We call un the neutral angle. This notation differ
from that of BCPE, who called the constant angle appear
in Eq. ~1! u r , the angle of repose. Our point is that differe

FIG. 1. Coulomb method of wedges to define the angleumax at
which an avalanche starts.
4692 © 1998 The American Physical Society
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PRE 58 4693SURFACE FLOWS OF GRANULAR MATERIALS:A . . .
experiments can lead to different angles of repose, i.e.
different final slopes of the pile at the end of the avalanc
not always equal toun .

For the rolling species, BCRE write

]R

]t
52

]h

]t
1v

]R

]x
1~diffusion terms!, ~2!

wherev is a flow velocity, assumed to be nonvanishing~and
approximately constant! for u;un . For simple grain shape
~spheroidal! and average levels of inelastic collisions, w
expectv;gd;(gd)1/2, whered is the grain diameter andg
the gravitational acceleration. Equation~1! gives ]h/]t as
linear in R: This should hold at smallR, when the rolling
grains act independently, but whenR.j, this is not accept-
able. The grains in the upper part of the rolling phase can
interact any longer with the static phase since they
screened off by particles in the lower part of the rollin
phase. Consider, for instance, the ‘‘uphill waves’’ mention
by BCRE, whereR is constant: Eq.~1! shows that an acci
dent in slope moves upward, with a velocityvup5gR. It is
not natural to assume thatvup can become very large fo
largeR.

This leads us to propose a modified version of BCR
equation valid for flows that involve largeR values and of
the form

]h

]t
5vup~un2u! ~R.j!, ~3!

wherevup is a constant, comparable tov. Our aim here is to
show the consequences of this modification.

Remark.In the present problems, the diffusion terms
Eq. ~2! turn out to be small when compared to the convect
terms~of orderd/L, whereL is the size of the sample!: we
omit them systematically.

C. A simple case

A first basic example~Fig. 3! is a two-dimensional silo,
fed from a point at the top, with a rate 2Q, and extending
over a horizontal span 2L: The height profile moves upwar
with a constant velocityQ/L. The profiles~which are sym-
metrical aroundx5L) were already analyzed within th
BCRE equations@9#. With the modified version, theR profile
stays the same, vanishing at the walls:

FIG. 2. The basic assumption of the BCRE picture is that th
is a sharp distinction between immobile grains with a profileh(x,t)
and rolling grains of thicknessR(x,t). R is measured in units o
‘‘equivalent height’’: collision processes conserve the sumh1R.
to
,

ot
e

d

s

e

R5
x

L

Q

v
~0,x,L !, ~4!

but the angleu is modified anddiffers from the neutral
angle; setting]h/]t5Q/L, we arrive at

un2u5
Q

Lvup
~0,x,L !. ~5!

Thus, using our modified version of BCRE’s equation, whi
should be valid here forQ.vj, we expect a slope that i
now dependent on the rate of filling: This might be tested
experiments or in simulations.

II. DOWNHILL AND UPHILL MOTIONS

Our starting point is a supercritical slope, extending ov
a horizontal spanL with an angleu5umax1« ~Fig. 1!. Fol-
lowing the ideas of Sec. I, the excess angle« is taken to be
small ~of orderj/L). It will turn out that the exact value of«
is not important: As soon as the avalanche starts, the po
lation of rolling species grows rapidly and becomes indep
dent of« ~for « small!. This means that our scenarios ha
a certain level of universality. The crucial feature is th
grains roll down, but profiles move uphill. We shall expla
this in detail in the following subsection.

A. Wave equations and boundary conditions

It is convenient to introduce a reduced profile

h̃~x,t !5h~x,t !2unxn . ~6!

Following BCRE, we constantly assume that the anglesu are
not very large and write tanu;u: This simplifies the nota-
tion. Ultimately we may write Eqs.~2! and ~3! in the com-
pact form

]R

]t
52

]h̃

]t
1v

]R

]x
, ~7!

]h̃

]t
52vup

]h̃

]x
. ~8!

Another important condition is that we must haveR.0. If
we reachR50 in a certain interval ofx, we must then re-
place Eq.~8! by

e FIG. 3. Steady-state feeding of a two-dimensional silo with
flux 2Q over a length 2L, leading to a constant growth velocit
Q/L.
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4694 PRE 58BOUTREUX, RAPHAËL, AND de GENNES
]h̃

]t
50. ~9!

One central feature of the modified equations~7! and ~8! is
that, wheneverR.0, they arelinear. The reduced profileh̃
is decoupled fromR and follows a very simple wave equa
tion

h̃~x,t !5w~x2vupt !, ~10!

wherew is an arbitrary function describing uphill waves.
It is also possible to find a linear combination ofR(x,t)

and h̃(x,t) that moves downhill. Let us set

R~x,t !1lh̃~x,t !5u~x,t !, ~11!

wherel is an unknown constant. Inserting Eq.~11! into Eq.
~7!, we arrive at

]u

]t
2v

]u

]x
5@vup2l~vup1v !#

]h̃

]x
. ~12!

Thus, if we choose

l5
vup

v1vup
, ~13!

we find thatu is ruled by a simple wave equation and w
may set

u~x,t !5u~x1vt !. ~14!

We can rewrite Eq.~11! in the form

R~x,t !5u~x1vt !2lw~x2vupt !. ~15!

Equations~10! and~15! represent the formal solution of ou
problem in all regions whereR.0. We shall see that this
formal solution leads in fact to a great variety of avalanc
regimes.

B. Comparison of uphill and downhill velocities

Our equations introduce two velocities: one downhill (v)
and one uphill (vup). How are they related? The answ
clearly depends on the precise shape~and surface features! of
the grains. Again, if we go to spheroidal grains and aver
levels of inelasticity, we may try to relatevup and v by a
naive scaling argument. Returning to Eqs.~1! and~3! for the
rate of exchange between fixed and rolling species, we m
interpolate between the two limits (R,j andR.j):

]h

]t
5gj f S R

j D ~un2u!, ~16!

where the unknown functionf has the limiting behaviors

f ~x→0!5x,
~17!

f ~x@1!5 f `5const.

This corresponds tovup5 f `gj. Since we have assumedv
;gd, we are led to
e

e

ay

vup/v; f `j/d. ~18!

If, even more boldly, we assume thatf `;1, sincej is some-
what larger than the grain size, we are led to suspect thatvup
may be larger thanv. However, this is very tentative and i
the following discussion we shall retain both possibiliti
vup.v andvup,v. As we shall see, they lead to somewh
different scenarios.

C. Closed versus open systems

Various types of boundary conditions can be found
our problems of avalanches.

~a! At the top of the heap, we will consider situations
zero feeding (R50). However, we could also have a co
stant injection rateQ fixing R5Q/v. This occurs in the silo
of Fig. 3. It also occurs at the top of a dune under a ste
wind, where saltation takes place on the windward side@10#,
imposing a certain injection rateQ, which then induces a
steady-state flow on the steeper, leeward side.

~b! At the bottom end, we sometimes face a solid wa
e.g., in the silo; then we talk about aclosedcell and impose
R50 at the left wall. However, in certain experiments, wi
a rotating bucket, the bottom end isopen~Fig. 4!. Here the
natural boundary condition ish5const at the bottom poin
andR is not fixed.

We discuss open cells in Sec. III and closed cells in S
IV. Within our model, the final states for these two types tu
out to be deeply different.

III. THICK AVALANCHES IN AN OPEN SYSTEM

A. Onset

Our initial situation is shown in Fig. 4~a!. As explained in
Sec. I, at the starting time (t50) we do have some rolling
grains, but their number is few. We may thus use Eqs.~7!
and ~8! and the initial condition

R~x,t50!50. ~19!

Similarly ~taking the origin of thex axis at the bottom point!,
we know the initial value ofh̃

h̃~x,t50!5~umax2un!x[dx, ~20!

FIG. 4. Two types of cells for avalanches:~a! open cell, with
h5const at the bottom of the slope, and~b! closed cell, withR
50 at the bottom.
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TABLE I. Avalanche in an open cell: summary of the different expressions for the amountR of rolling species and for the reduced profi
h̃ of the static phase.

Act Parameter Bottom part Central part Top part

I x 0 vupt L2vt L
R ld(x1vt) dvupt

d
vup

v
~L2x!

h̃ 0 d(x2vupt) d(x2vupt)

II x 0 L2vt vupt L

R ld(x1vt) ldSL2vupt1
vup

v
~L2x! D d

vup

v
~L2x!

h̃ 0 0 d(x2vupt)

III x 0 L2vt L2vSt2 L

vup
D L

R ld(x1vt) ldSL2vupt1
vup

v
~L2x! D 0

h̃ 0 0 0
ng

av

fo

va

m

is
en

at
whered is the ~positive! difference between the maximum
angle and the neutral angle.

B. Act I

During this act, we shall see that the amount of rolli
speciesR grows in the container and that the profileh̃ starts
to evolve. We express the solutions in terms of the two w
functionsw(z) ~defined for2`,z,L) and u(z) ~defined
for 0,z,1`) introduced in Eqs.~10! and ~15!. Equation
~20! imposes the values ofw for 0,z,L:

w~z!5dz ~0,z,L !. ~21!

For an open system, the boundary condition is written

h̃~0,t !5h~0,t !50. ~22!

This fixesw for negative arguments:

w~z!50 ~z,0!. ~23!

Let us now turn to the wave functionu(z). Equation~19!
gives us a portion of it:

u~z!5ldz ~0,z,L !. ~24!

In concrete terms, we may describe the situation as
lows. ~i! We have an uphill wave@corresponding to the
point z50 of the functionw(z)#, starting att50 from the
bottom end and reaching a pointxu(t)5vupt at time t. ~ii !
We have a downhill wave@corresponding to the pointz5L
of the functionu(z)#, starting from the top with velocityv
and reaching the pointxd(t)5L2vt at time t. We shall call
act I the time interval (0,t,t l) wherexu,xd , i.e., when
the two fronts have not met.

During this act, we have three spatial regions in our a
lanche: a bottom part (0,x,xu), a central part (xu,x
,xd), and a top part (L.x.xd). The solution given by
Eqs. ~21! and ~24! gives us an answer only for the botto
and central parts. We can determinateu(z) for z.L ~corre-
e

l-

-

sponding to the top part! by imposing the zero feeding
boundary condition at the top:

R~x5L,t !50. ~25!

Inserting this into Eq.~15!, we arrive at

lw~L2vupt !5u~L1vt !, ~26!

i.e.,

u~z!5lwFLS 11
vup

v D2z
vup

v G . ~27!

While in Eq. ~27! the argument ofw satisfies 0,z,L, we
may use Eq.~21! for w, obtaining

u~z!5ldFLS 11
vup

v D2z
vup

v G FL,z,S 11
vup

v DLG .
~28!

~Note that this isnot a Dirac delta function, but a simple
product.! We can now discuss the whole structure that
predicted for act I. Our results for an avalanche in an op
cell are summarized in Table I.

1. The bottom part

Here Eq. ~23! tells us thath̃50 ~i.e., the slopeu has
already relaxed and is equal to the neutral angleun) and thus
R5u(x1vt). We may use Eq.~24! for u and arrive at

R5ld~x1vt ! ~x,vupt !. ~29!

In particular at the bottom of the slope (x50), R is finite.
Some rolling grains fall out of the container with a flux th
increases linearly in time.
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2. The central part

Here Eq.~21! tells us that

h̃5d~x2vupt ! ~vupt,x,L2vt !. ~30!

The slope has not yet changed in this part of the contai
Then Eqs.~15! and ~24! give us

R5u~x1vt !2lh̃5dvupt ~vupt,x,L2vt !. ~31!

Thus, in the central part, the density of rolling species
independent ofx and increases linearly in time.

3. The top part

Here we still use Eq.~30! for h̃, but we must now turn to
Eq. ~28! for u(z). The result is

R5d
vup

v
~L2x! ~L2vt,x,L !. ~32!

The above expression is independent of time and vanish
the uphill border (x5L). The structure of these profiles
shown in Fig. 5. Act I corresponds to the amplification of t
avalanche via a large increase of the amountR of rolling
grains. The maximum value ofR, Rmax5ldL, is obtained at
the end of act I, in the central region (x5xu5xd at t5t l).

C. Act II

The uphill front and the downhill front meet at a time

t15
L

v1vup
. ~33!

At time t.t l they pass each other without any emission
secondary waves~since our equations are linear!. Thus our

FIG. 5. Open cell act I~dashed lines! and act II~solid lines!. An
uphill wave starting from the bottom (x50) has reached the poin
xu(t)5vupt. A downhill wave starting from the top has reached t
point xd(t)5L2vt. During act I the two fronts have not met (xu

,xd); during act II they have passed each other.
r.

s

at

f

solutionsu(z) andw(z) remain valid. However, the spatia
domains are different: The top region is bounded by

vupt,x,L,

while the bottom region is defined by

x,L2vt

and the central region by

L2vt,x,vupt.

The profile h̃(x,t) retains its structure derived from Eq
~10!, ~21!, and ~23!: h̃ vanishes in the bottom and centr
regions and increases linearly~with sloped! in the top re-
gion. In the bottom region,R is still given by Eq.~29! and in
the top region by Eq.~32!, as shown in Table I. In the centra
region, R is a linear interpolation between the values atxu
andxd ~Fig. 5!, namely,

R5ldS L2vupt1
vup

v
~L2x! D . ~34!

In the bottom and central regions whereh̃50, there is no
longer an amplification of the rolling grains.R is then simply
convected downward at the constant speedv. Rmax5ldL is
now located at the pointxd .

D. Act III

The end of act II occurs when the uphill wave fro
reaches the borderx5L at the top of the container. The
act III begins at a time

tup[
L

vup
. ~35!

At this time, the solution~34! for R vanishes atx5L. For
t.tup, it vanishes at a certain end pointxs(t):

xs5L2vS t2
L

vup
D . ~36!

The end pointxs sweeps from top to bottom during act I
and reaches the bottom of the container (x50) at the end
time te , defined by

te5
L

v
1

L

vup
.tup. ~37!

In the regionx,xs , the preceding solution of act II holds
h̃[0 and the rolling particles are convected downward. N
that at the beginning of act III, ifv,vup, the pointxd(t)
5L2vt ~where the slope ofR changes! is still located inside
the container, close to its bottom end~as it appears in Fig. 6!.

What happens forx.xs? Our discussion in Sec. II tells u
that for xs,x,L the system isfrozen with R50 and
]h̃/]t50. Thus h̃ retains its previous valueh̃50 every-
where. During act III the slope corresponds to the neu
angle everywhere, but we still have some rolling species
x,xs(t), which are simply convected downward at speedv.
All the rolling grains fall out of the cell when they reach th
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borderx50. The successive aspects ofR(x,t) during act III
are shown in Fig. 6, drawn forv,vup. At t5te , there are
no rolling grains left in the cell and the avalanche proc
ends. In this open cell, the angle of repose is therefore e
to the neutral angleun .

IV. THICK AVALANCHES IN A CLOSED CELL

Here the starting point (t50) corresponds to a critica
heap (u5umax) between two walls, separated by a distan
L. The initial conditions are the same; the only difference l
in the boundary condition atx50, which now reads

R~0,t !50. ~38!

This condition corresponds to a wall that prevents the roll
grains from leaving the container. The initial conditions
the same structure for our wave functionsu(z) for 0,z
,L @Eq. ~24!# andw(z) for 0,z,L @Eq. ~21!#. The bound-
ary condition at the top is unchanged and again gives usu(z)
for L,z,L(11v/vup) @Eq. ~28!#. The main difference from
Sec. III lies in the functionw(z) for z,0. When the bound-
ary condition at the bottom@Eq. ~38!# is inserted into Eq.
~15!, we get

w~2vupt !5dvt,

w~z!52d
v

vup
z S 2

vup

v
L,z,0D . ~39!

A. Act I †0<t<L /„v1vup…‡

Act I corresponds again to the amplification of the av
lanche. The results are shown in Fig. 7 and are summar
in Table II.

1. The bottom part„x<xu[vupt…

Here we have

h̃5d
v

vup
~vupt2x!, ~40!

R5dx. ~41!

We have]h̃/]x,0: The slope is now smaller than the ne
tral angleun . Hence the bottom part corresponds to a reg
of accretion of the rolling grains due to the wall located

FIG. 6. Open cell act III. The rolling grains at 0,x,xs(t) are
simply convected downward. A frozen interval appears near the
@xs(t),x,L#. The case displayed here corresponds tovup.v. At
the beginning of act III, the pointxd is still inside the container.
s
al

e
s

g

-
ed

n
t

x50. Note that such a region never appears during an a
lanche in an open cell~Sec. III!.

2. Central and top parts

The presence of the bottom wall does not yet affect ins
the central part (vupt,x,L2vt) and the top part (L2vt
,x,L). Hence, for these parts,R and h̃ are the same as in
the case of an open system; they are given in Table II.

B. Act II †t>L /„v1vup…‡

The structure ofu andw is the same as during act I, bu
the order of points (xd ,xu) is altered. The results appear
Fig. 7. The explicit form ofR in the central part is

R5dFxS 12
vup

v D2vupt1
vup

v
LG . ~42!

Note that]R/]t is negative in this central region, which is
region of accretion sinceu,un . The sign of]R/]x depends
on the ratiovup/v.

C. Act III

The end of act II occurs when the fastest wave front h
the opposite wall. Ifvup.v, this occurs at the top; ifvup
,v, this occurs at the bottom. Thus we must distinguish t
cases~see Table II for the different expressions ofR andh̃).

1. vup>v

Act III begins att5tup5L/vup ~see Fig. 8!. Here we find
again a frozen region starting from the top, in an interv
x̃s(t),x,L:

x̃s~ t !5
vup

vup2v
~L2vt !. ~43!

p

FIG. 7. Closed cell act I~dashed lines! and act II~solid lines!.
At the left of the uphill wave@x,xu(t)# the slope is smaller thanun

@see Eq.~40!#. During act II the profile ofR is drawn forvup.v
~whenvup,v, ]R/]x in the central region becomes positive!.
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TABLE II. Avalanche in a closed cell: different expressions ofR and h̃. Note that two different cases (vup.v or vup,v) are possible
during act III.

Act Parameter Bottom part Central part Top part

I x 0 vupt L2vt L
R dx dvupt

d
vup

v
~L2x!

h̃ d
v

vup
~vupt2x! d(x2vupt) d(x2vupt)

II x 0 L2vt vupt L

R dx dFxS12
vup

v D2vupt1
vup

v
LG d

vup

v
~L2x!

h̃ d
v

vup
~vupt2x! d

v
vup

~vupt2x! d(x2vupt)

III
(vup.v)

x 0 L2vt
vup

vup2v
~L2vt ! L

R dx dFxS12
vup

v D2vupt1
vup

v
LG 0

h̃
d

v
vup

~vupt2x! d
v

vup
~vupt2x!

d(L2x)

III
(vup,v)

x 0
vup

vup2v
~L2vt ! vupt L

R 0
dFxS12

vup

v D2vupt1
vup

v
LG d

vup

v
~L2x!

h̃ d(L2x) d
v

vup
~vupt2x! d(x2vupt)
e
e

a
at

he
e
th

he
l

is

es
m-
be

y
ea-
in

at
Whent runs fromtup to td5L/v, xs sweeps the whole slop
from top to bottom. Whenx̃s(t) reaches a given point, th
rolling amountR vanishes and the granular media freezes
this point. The end of the avalanche now takes placet
5td , when the last rolling grains stop atx50.

The frozen value ofh̃ is given byh̃„x, t̃ s(x)…, wheret̃ s(x)
is the inverse function ofx̃s(t). Using Eq.~43!, we get for
the frozen value ofh̃

h̄froz~x!5d~L2x!. ~44!

Thus, contrary to the case of an open cell, the final angleu f
is not the neutral angle, but is smaller:

u f5un2d. ~45!

This small final angle is due to the wall at the bottom of t
container (x50): The rolling grains cannot fall out of th
cell and must accumulate near the wall at the bottom of
slope, thus reducing its final slope.

2. The casevup<v

When vup,v, the end of act II occurs at a timetd
5L/v and corresponds to the downhill front reaching t
bottom end~see Fig. 9!. Act III corresponds to the interva
td,t,tup; during this time, the system freezesfrom the
t

e

bottom. The frozen region occupies the interval 0,x, x̃s ,
wherex̃s is still given by Eq.~43!. x̃s now sweeps the slope
from bottom to top. Again, we find that the final slope
un2d.

V. DISCUSSION

A. Three simple checks

The experimental determination of the whole profil
h(x,t) andR(x,t) on an avalanche represents a rather co
plex task. However, certain simple checks could easily
performed.

~a! With an open cell, the loss of material measured b
R(0,t) is easily obtained, for instance, by capacitance m
surement@11#. Our predictions for this loss are described
Fig. 10. R(0,t) increases linearly up to a maximumRmax
5ldL at t5L/v and then decreases linearly, reaching 0
the final timete5L(1/v11/vup). The integrated amount is

M[E R~0,t !dt5
dL2

2v
. ~46!

Unfortunately, the attention in Ref.@11# was focused mainly
on the reproducibility ofM, but ~apparently! the value ofM
and the shape ofR(0,t) were not analyzed in detail.
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~b! With a closed cell, a simple observable is the rise o
the height at the bottomh(0,t). This is predicted to increas
linearly with time,

h~0,t !5h̃~0,t !5dvt, ~47!

up to t5L/v, and to remain constant after. Similar measu
ments~both for open or closed cells! could be done at the top
point, givingh(L,t).

~c! A crucial parameter is the final angleu f . In our
model, this angle is the same all along the slope. For an o
cell, it is equal to the neutral angleun . For a closed cell, it is
smaller: u f5un2d5umax22d.

FIG. 8. Closed cell act III. The casevup.v. A frozen patch,
where the avalanche is terminated, grows from the top; in
patch, the final slope isu f5un2d.

FIG. 9. Closed cell act III (vup,v). Here a frozen patch grow
from the bottom, where the final slope is againu f5un2d.
-

en

Thus the notion of an angle of repose is not universal. T
result for closed cellu f5un2d was already predicted in
Ref. @12#, where we proposed a qualitative discussion
thick avalanches. The dynamics~based on a simplified ver
sion of BCPE’s equations! was unrealistic~too fast!, but the
conclusion onu f was obvious: In a closed cell, the materi
that starts at the top has to be stored at the bottom part
this leads to a decrease in slope.

Some recent experiments seem to indicate that indeed
angle of repose is not universal@13,14#. More experimental
work will be needed, however, in order to check more p
cisely our predictions. For a detailed discussion, see the
cent work of Boutreux@15#.

~d! One major unknown of our discussion is the ra
vup/v. We already pointed out that this may differ for di
ferent types of grains. Qualitative observations on a clo
cell would be very useful here: If in its late stages~act III!
the avalanche first freezes at the top, which meansvup.v. If
it freezes from the bottom,vup,v. If it does more complex
things, this means that our model is wrong.

B. Limitation of the present model

1. Deterministic description

The avalanche starts automatically atu5umax1«
('umax in the macroscopic limit! and sweeps the whole su
face. In the open cell systems~with slowly rotating drums!
one finds experimentally a nearly periodic set of avalan
spikes, suggesting thatumax is well defined. However, the
amplitude~and the duration! of these spikes varies@11#: It
may be that some avalanches do not start from the top.
can only pretend to represent the full avalanches.

What is the reason for these statistical features?~i! Dis-
parity in grain size tends to generate spatial inhomogene
after a certain number of runs~in the simplest cases, the larg
grains roll further down and accumulate near the walls!. ~ii !
Cohesive forces may be present: They tend to deform
final profiles, with au(x) that is not constant in space.~iii !
Parameters such asumax ~or un) may depend on sample his
tory.

2. Regions of small R

For instance, in a closed cell,R(x,t)→0 for x→0. A
complete solution in the vicinity ofR50 requires more com-
plex equations, interpolating between BCPE’s and our lin
set of equations, as sketched in Eq.~16!. We have indeed
investigated this point and found some solutions valid for

is

FIG. 10. Flux profile predicted at the bottom of an open ce
The maximumRmax5ldL is obtained fort5L/v.
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R near a stopping wall. This shall be described elsewher
does not seem to alter significantly the macroscopic res
described here.

3. Ambiguities inun

When comparing thick and thin avalanches, we assum
thatun is the same for both; however, there may in fact b
small difference between the two. Since most practical s
ations are related to thick avalanches, we tend to focus
it
f
e,

in
s

m

s,

,

It
lts

d
a
-
ur

attention on the ‘‘thick’’ case, but this possible distinctio
between thick and thin should be kept in mind.
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