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Surface flows of granular materials: A modified picture for thick avalanches
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Some time ago, Bouchaugt al. [J. Phys. 14, 1383(1994)] proposed a basic set of equations to describe
surface flows. They assumed in particular that the rate of erdsioaccretion, depending on the slppeas
proportional to the local amourR of rolling species. This is natural for thin avalanches, but not for thick
avalanches. We discuss here the thick limit and assume th&tstat (the grain diametegrthe rates become
independent oR. This leads to some different featurés:filling of a silo, for which the steady-state slope is
a (decreasingfunction of the feeding ratgji) avalanches with a sink at the bottom effdpen cells™), for
which the profile starts at a certain anglg,, and ends at the neutral anglg, where#,, is the angle at which
erosion balances accretion and is smaller tidan, (6,= 0max—9); and (iii) avalanches with a closed end
(where the flow stopsfor which the angle of repose i®t 6, but 6,— 6= 6,,,,—26. Each avalanche involves
a cascade of successive regimes that are described analyti&dl§63-651X%98)03910-5

PACS numbefs): 83.10.Hh

|. GENERAL PRINCIPLES been studied in detailed simulatiof§]. It shows a sharp
boundary between rolling grains and immobile grains: This
is the starting point of sharp boundary between rolling grains
When constructing Fort Bourbon, Coulonivho was at  and immobile grains and the starting point of most current
the time a military engineg¢moticed that a granular system, theories.
with a slope angl® larger than a critical valué,,,,, would The amplification process was considered in some detail
be unstable. He related the anglg,, to the friction proper- by Bouchaud, Cates, Ravi Prakash, and Edw&B@RE) in
ties of the material. For granular materials, with negligiblea classic paper of 1994.8]. It is important to realize that, if
adhesive forces, the simple argument of Fig. 1 leads tave start with a thicknesg of rolling species, we rapidly
tan O.=u, Wherep is a friction coefficien{1]. The insta- reach much larger thickness&s In practice, with macro-
bility generates an avalanche. Our aim, in the present papescopic samples, we deal withick avalanchegR>¢). We
is to propose a detailed scenario for the avalanche. are mainly interested in these regimes, which will in fact turn
We note first that the Coulomb argument is not completeout to be relatively simple.
(@ It does not tell us at what angl&,,.,+« the process will
actually start andb) it does not tell us which gliding plane is B. BCRE’s modified equations
preferred(among those of anglé,,,) as shown in Fig. 1.
We shall propose an answer to these questions based on tgﬁ
notion of a characteristic mesh siZan the granular mate-
rial.
Simulations[2,3] and experiment$4] indicate that the
forces are not uniform in a granular medium, but that there
are force paths conveying a large fraction of the force. These i yR(6,— 0) + (diffusion termg, (0]
paths have a certain mesh sigghat is dependent of the

grajn shapes, the fric_tion. forces between them, etc., but i\?vherey is a characteristic frequency and the angjeis a
typically £~5-10 grain diameted. constant. This gives erosion fa@r> 6, and accretion forg

~ We also know that, under strong shear, a granular mate= g e call 6, the neutral angle. This notation differs
rial can displayslip bands[5]. The detailed geometry of rom that of BCPE, who called the constant angle appearing

these bands depe_nds on.the impos.ed boundary conditions, Eq. (1) 6, , the angle of repose. Our point is that different
However, the minimum size of a slip band appears to be

larger thand. We postulate that the minimum sizeincides
with the mesh sizé.

We are then able to make a plausible prediction for the
onset of the Coulomb process: The thickness of the excess
layer must be of orde& and the excess anglemust be of
orderé/L, wherel is the size of the free surface. Thus, at the
moment of onset, our picture is that a layer of thickness
starts to slip. It shall then undergo various proces§edt
shall be fluidized by the collisions on the underlying heap
and(ii) it shall be amplified because the rolling grains desta- FIG. 1. Coulomb method of wedges to define the arilg, at
bilize some other grains below. The steady-state flow hasnhich an avalanche starts.

A. Onset of avalanches

BCRE discuss surface flows on a pile of profiiéx,t)
d local slope tal=6=0h/ox, with a certain amount
R(x,t) of rolling species(Fig. 2). In Ref.[7] the evolution
equation for the profild(x,t) is written in the form
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FIG. 2. The basic assumption of the BCRE picture is that there FIG. 3. Steady-state feeding of a two-dimensional silo with a
is a sharp distinction between immobile grains with a prdfile,t) flux 2Q over a length 2, leading to a constant growth velocity
and rolling grains of thicknesR(x,t). R is measured in units of Q/L.

“equivalent height”: collision processes conserve the duinR.

X Q
experiments can lead to different angles of repose, i.e., to R=r 5 (O=<x<L), (4)
different final slopes of the pile at the end of the avalanche,
not always equal td, . _ but the angled is modified anddiffers from the neutral
For the rolling species, BCRE write angle settingoh/at=QJ/L, we arrive at
JR sh  oR - Q
E:_Eﬂj 5+(d|ffu5|on terms, (2 6,— 6= (0<x<L). (5)

Loy

wherev is a flow velocity, assumed to be nonvanishiagd  Thus, using our modified version of BCRE’s equation, which

approximately constanfor 6~ 6,. For simple grain shapes should be valid here foQ>uv ¢, we expect a slope that is

(spheroidal and average levels of inelastic collisions, we now dependent on the rate of filling: This might be tested in

expectv ~ yd~ (gd) %, whered is the grain diameter angl  experiments or in simulations.

the gravitational acceleration. Equatigh) gives oh/dt as

linear in R: This should hold at smalR, when the rolling Il. DOWNHILL AND UPHILL MOTIONS

grains act independently, but wh&» ¢, this is not accept-

able. The grains in the upper part of the rolling phase cannot Our starting point is a supercritical slope, extending over

interact any longer with the static phase since they aré@ horizontal sparh with an angled= 0pate (Fig. 1). Fol-

screened off by particles in the lower part of the rolling lowing the ideas of Sec. I, the excess anglis taken to be

phase. Consider, for instance, the “uphill waves” mentionedsmall (of order&/L). It will turn out that the exact value ef

by BCRE, whereR is constant: Eq(1) shows that an acci- is not important: As soon as the avalanche starts, the popu-

dent in slope moves upward, with a velocity,= yR. It is lation of rolling species grows rapidly and becomes_indepen—

not natural to assume that,, can become very large for dent ofe (for e small). This means that our scenarios have

largeR. a certain level of universality. The crucial feature is that
This leads us to propose a modified version of BCRE’sgrains roll down, but profiles move uphill. We shall explain

equation valid for flows that involve large values and of this in detail in the following subsection.

the form

A. Wave equations and boundary conditions

dh . . . .
E:v“p( 6,—0) (R>¢), ©) It is convenient to introduce a reduced profile

. _ _ h(x,t) =h(x,1) = X, . ®)

wherev , is a constant, comparable to Our aim here is to
show the consequences of this modification. Following BCRE, we constantly assume that the anglase

Remark.In the present problems, the diffusion terms in not very large and write taé~#: This simplifies the nota-
Eq. (2) turn out to be small when compared to the convectivetion. Ultimately we may write Eqs(2) and (3) in the com-
terms(of orderd/L, whereL is the size of the samplewe pact form
omit them systematically. _

R dh JR

C. A simple case ot o o ox’ @
A first basic exampl€Fig. J) is a two-dimensional silo, ~ ~
fed from a point at the top, with a rate@® and extending oh _—oh ®
over a horizontal spanl2 The height profile moves upward ot lup gy

with a constant velocityQ/L. The profiles(which are sym-

metrical aroundx=L) were already analyzed within the Another important condition is that we must haRe-0. If
BCRE equation§9]. With the modified version, th profile =~ we reachR=0 in a certain interval ok, we must then re-
stays the same, vanishing at the walls: place Eq.(8) by



4694

oh

—=0.

9
One central feature of the modified equatid¢isand (8) is
that, wheneveR>0, they ardlinear. The reduced profildé

is decoupled fronR and follows a very simple wave equa-
tion

hx,t) =w(x—vyt), (10)

wherew is an arbitrary function describing uphill waves.
It is also possible to find a linear combination R{x,t)
andh(x,t) that moves downhill. Let us set

R(x,t)+Nh(x,t) =u(x,t), (11)

where\ is an unknown constant. Inserting E4J) into Eq.
(7), we arrive at

o ou = A + 12
0V o " Luw Mogto)] o 12
Thus, if we choose
_ _Yuw
N v+vup' (13
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FIG. 4. Two types of cells for avalanches(a) open cell, with
h=const at the bottom of the slope, afig) closed cell, withR
=0 at the bottom.

vyplv~f.é/d. (18

If, even more boldly, we assume thiat~ 1, sinceé is some-
what larger than the grain size, we are led to suspectthat
may be larger tham. However, this is very tentative and in
the following discussion we shall retain both possibilities
vyp>v andvy,,<v. As we shall see, they lead to somewhat
different scenarios.

C. Closed versus open systems

we find thatu is ruled by a simple wave equation and we

may set
u(x,t)=u(x+uot). (14
We can rewrite Eq(11) in the form
R(X,t) =u(x+vt) = AW(X—vd). (15

Equations(10) and(15) represent the formal solution of our
problem in all regions wher&®>0. We shall see that this
formal solution leads in fact to a great variety of avalanch
regimes.

B. Comparison of uphill and downhill velocities

Our equations introduce two velocities: one downhil) (

and one uphill ¢,;). How are they related? The answer

clearly depends on the precise shéged surface featurgsf

Various types of boundary conditions can be found for
our problems of avalanches.

(a) At the top of the heap, we will consider situations of
zero feeding R=0). However, we could also have a con-
stant injection rat&) fixing R=Q/v. This occurs in the silo
of Fig. 3. It also occurs at the top of a dune under a steady
wind, where saltation takes place on the windward §id#,
imposing a certain injection rat®, which then induces a
steady-state flow on the steeper, leeward side.

(b) At the bottom end, we sometimes face a solid wall,

ee.g., in the silo; then we talk aboutctosedcell and impose
R=0 at the left wall. However, in certain experiments, with
a rotating bucket, the bottom endapen(Fig. 4). Here the
natural boundary condition iB=const at the bottom point
andR is not fixed.

We discuss open cells in Sec. Il and closed cells in Sec.
IV. Within our model, the final states for these two types turn

the grains. Again, if we go to spheroidal grains and averag@Ut to be deeply different.

levels of inelasticity, we may try to relate,, andv by a
naive scaling argument. Returning to E¢B. and(3) for the

rate of exchange between fixed and rolling species, we may

interpolate between the two limitR& £ andR>¢€):

ah

ot

R)a—a
g/ (0= 0),

where the unknown functiohhas the limiting behaviors

= 7§f( (16)

f(x—0)=x,
17

f(x>1)=f,=const.

This corresponds to ,,=f..y£. Since we have assumed
~vd, we are led to

Il. THICK AVALANCHES IN AN OPEN SYSTEM
A. Onset

Our initial situation is shown in Fig.(4). As explained in
Sec. |, at the starting timet€£0) we do have some rolling
grains, but their number is few. We may thus use E@s.
and (8) and the initial condition

R(x,t=0)=0. (19

Similarly (taking the origin of thex axis at the bottom poifyt
we know the initial value oh

h(X,t=0) = ( Gy ) X=X, (20)
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_ TABLE . Avalanche in an open cell: summary of the different expressions for the arRfitolling species and for the reduced profile
h of the static phase.

Act Parameter Bottom part Central part Top part
| X 0 Uyt L—ut L
R NS(x+ot) v ot v
”p 5 (L—x)
v
h 0 O(X—vypt) S(X—vypt)
Il X 0 L—ut Uyt L
v v
R NS(x+ut) )\E(L*vuthr%O(L*x)) 6%’3(fo)
h 0 0 S(x—vgd)
L
1l X 0 L—uvt L—v(t— —) L
Uup
1%
R No(x+ut) )\5(L—Uupt+ %’ (L—x)) 0
h 0 0 0

where § is the (positive difference between the maximum sponding to the top partby imposing the zero feeding
angle and the neutral angle. boundary condition at the top:

B. Act | R(x=L,t)=0. (25)

During this act, we shall see that the amount of rolling
speciesk grows in the container and that the profilestarts
to evolve. We express the solutions in terms of the two wave

Inserting this into Eq(15), we arrive at

functionsw(z) (defined for—«<z<L) andu(z) (defined AW(L —v ) =u(L +ot), (26)
for 0<z<+) introduced in Egs(10) and (15). Equation
(20) imposes the values af for 0<z<L: ie.,
w(z)=46z (0<z<L). (22
u(z)=aw|L| 1+ 28| 5 Zue| 27)
For an open system, the boundary condition is written v

h(0,t)=h(0t)=0. (220 \while in Eg. (27) the argument ofv satisfies G<z<L, we

This fixesw for negative arguments: may use Eq(21) for w, obtaining

w(z)=0 (z<0). 23 v v v
(2) (2<0) @3 u(z)=)\6[L 1+ 2|z F {L<z< 1+—”pH.
Let us now turn to the wave functiom(z). Equation(19) v v v (28)
gives us a portion of it:
u(z)=1éz (0<z<L). (24) (Note that this isnot a Dirac delta function, but a simple

product) We can now discuss the whole structure that is
In concrete terms, we may describe the situation as folpredicted for act I. Our results for an avalanche in an open
lows. (i) We have an uphill wavécorresponding to the cell are summarized in Table I.
point z=0 of the functionw(z)], starting att=0 from the
bottom end and reaching a poirj(t)=vqt at timet. (ii) 1. The bottom part
We have a downhill wav§corresponding to the poirt=L Here Eq.(23) tells us thath=0 (ie., the sloped has

of the functionu(z)], starting from the top with velocity X
; ; 1 _ ; already relaxed and is equal to the neutral amgleand thus
and reaching the pointy(t) =L —wvt at timet. We shall call R=u(x+ot). We may use Eq(24) for u and arrive at

act | the time interval (6&t<<7) wherex,<Xq, i.e., when
the two fronts have not met.

During this act, we have three spatial regions in our ava- R=N6(x+ot)  (X<vyd). (29)
lanche: a bottom part @x<x,), a central part X,<x
<Xq), and a top part l{>x>xg4). The solution given by In particular at the bottom of the slop&=0), R is finite.
Egs. (21) and (24) gives us an answer only for the bottom Some rolling grains fall out of the container with a flux that
and central parts. We can determinafg) for z>L (corre- increases linearly in time.
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A solutionsu(z) andw(z) remain valid. However, the spatial
domains are different: The top region is bounded by

actll

vyt <x<L,

ST T while the bottom region is defined by

| : X X<L-—ut

| and the central region by

! L—vt<x<uvd.

| . The profile h(x,t) retains its structure derived from Egs.

- (10), (21), and(23): h vanishes in the bottom and central

<! regions and increases linearlyith slope ) in the top re-

gion. In the bottom regiorR is still given by Eq.(29) and in
L7 ) the top region by Eq32), as shown in Table I. In the central

By I _ x region,R is a linear interpolation between the valuesxat

0 Xy Xy L andxy (Fig. 5, namely,

act! actll

FIG. 5. Open cell act (dashed lingsand act li(solid lines. An _ Uup
= —vyt+— (L=X) |.
uphill wave starting from the bottormx&0) has reached the point R=AS|L Oupt v (L=x) (34
Xu(t)=vgt. A downhill wave starting from the top has reached the -

point x4(t)=L—wvt. During act | the two fronts have not met( In the bottom and central regions whene=0, there is no

<Xg4); during act Il they have passed each other. longer an amplification of the rolling grainB.is then simply
convected downward at the constant speedR,,,,=\dL is
2. The central part now located at the pointy.
Here Eq.(21) tells us that
_ D. Act Il
h=0x=vyd) (vyt=<x<L-uvt). (30 The end of act Il occurs when the uphill wave front
The slope has not yet changed in this part of the containef€aches the border=L at the top of the container. Then
Then Eqgs(15) and (24) give us act lll begins at a time
R=U(X+vt)—)\?1=5vupt (vt <x<L-wvt). (31 Tup= L (35)
Uyp

Thus, in the central part, the density of rolling species is o ) ]
independent ok and increases linearly in time. At this time, the solution34) for R vanishes ak=L. For

t>7,p, it vanishes at a certain end po(t):
3. The top part

~ L
Here we still use Eq(30) for h, but we must now turn to Xs=L—v|t- —) (36)
Eq. (28) for u(z). The result is
The end pointxg sweeps from top to bottom during act lli
R=5%) (L—x) (L—vt<x<L). (32) and reaches the bottom of the container=Q) at the end

time 7, defined by

The above expression is independent of time and vanishes at L L

the uphill border x=L). The structure of these profiles is Te:;+ E> Tup- (37)
shown in Fig. 5. Act | corresponds to the amplification of the P

avalanche via a large increase of the amoRnf rolling  |n the regionx<x,, the preceding solution of act I holds:
grains. The maximum value @, Rna,=A4L, is obtained at  h=0 and the rolling particles are convected downward. Note

the end of act |, in the central regioR€x,=xg att=7).  that at the beginning of act Ill, ib<v,,, the pointxy(t)
=L —vt (where the slope dR changesis still located inside
C. Actll the container, close to its bottom e(ab it appears in Fig.)6
The uphill front and the downhill front meet at a time What happens fox>xs? Our discussion in Sec. Il tells us
that for xs<x<L the system isfrozen with R=0 and
L dh/gt=0. Thus h retains its previous valub=0 every-
Tl:v+vup' (33 where. During act Il the slope corresponds to the neutral

angle everywhere, but we still have some rolling species at
At time t> 7, they pass each other without any emission ofx<<xs(t), which are simply convected downward at speed
secondary wavessince our equations are lingaiThus our  All the rolling grains fall out of the cell when they reach the



PRE 58 SURFACE FLOWS OF GRANULAR MATERIALSA . .. 4697

act|

N | actll N\

0 Xglt="1 Xg(t>T L=xglt=T actll act!
o up) s up) s up) )

FIG. 6. Open cell act lll. The rolling grains at<Ox<x4(t) are
simply convected downward. A frozen interval appears near the top I
[Xs(t)<x<L]. The case displayed here corresponds jo>v. At ] !
the beginning of act Ill, the pointy is still inside the container. Lo

borderx=0. The successive aspectsRffx,t) during act Ill act |~ g d
are shown in Fig. 6, drawn far<v,,. At t=r,, there are ' // i
no rolling grains left in the cell and the avalanche process gl

ends. In this open cell, the angle of repose is therefore equal ! .
to the neutral angl®,, . o Xy oL

act! act Il

IV. THICK AVALANCHES IN A CLOSED CELL FIG. 7. Closed cell act (dashed linesand act ll(solid lines.
At the left of the uphill wavd x<<x,(t)] the slope is smaller thaf,
Here the starting pointt&0) corresponds to a critical [see Eq.(40)]. During act Il the profile ofR is drawn forv ,>v
heap @= 0ay between two walls, separated by a distance(whenv,<v, JR/dx in the central region becomes positive
L. The initial conditions are the same; the only difference lies
in the boundary condition at=0, which now reads x=0. Note that such a region never appears during an ava-
lanche in an open ce(Sec. Il)).
R(0Ot)=0. (38

. . ) 2. Central and top parts
This condition corresponds to a wall that prevents the rolling Th fthe b Id ftect insid
grains from leaving the container. The initial conditions fix e presence of the bottom wall does not yet aifect inside

the same structure for our wave functionéz) for 0<z the central partf,t<x<L—wvt) and the top partL(—vt.
<L [Eq. (24)] andw(2) for 0<z<L [Eq.(21)]. The bound- <X<L). Hence, for these part® andh are the same as in
ary condition at the top is unchanged and again gives(zs the case of an open system; they are given in Table II.
for L<z<L(1+v/vy) [EQ.(28)]. The main difference from

Sec. lll lies in the functiorw(z) for z<0. When the bound- B. Actll [t>L/(v+vy)]
ary condition at the bottoriEqg. (38)] is inserted into Eq. The structure ofs andw is the same as during act I, but
(15), we get the order of points X4,x,) is altered. The results appear in

W(—vgg) = dut, Fig. 7. The explicit form ofR in the central part is

(42)

Uyp Uyp
X{1——]|—v,t+—L]|.

R=46
) . (39

v Uyp
w(z)=—6—2z |——L<z<0
Uup v

Note thatgR/dt is negative in this central region, which is a
A. Act | [0<t<L/(v+vyp)] region of accretion sincé< 6,. The sign ofdR/dx depends

] o on the ratiov /v,
Act | corresponds again to the amplification of the ava-
lanche. The results are shown in Fig. 7 and are summarized C. A
. .Act Il
in Table II.

The end of act Il occurs when the fastest wave front hits

1. The bottom part(x<x,=wvt) the opposite wall. Ifv,,>v, this occurs at the top; ib,,

<, this occurs at the bottom. Thus we must distinguish two

caseqsee Table Il for the different expressions®andh).

Here we have

~ v
h=6 - (vt —X), (40 1. vp>v
up
Act Ill begins att=7,,=L/v, (see Fig. 8 Here we find
R= 6x. (41) again a frozen region starting from the top, in an interval
Xg(t)<x<L:

We havedh/ax<0: The slope is now smaller than the neu-
tral angled, . Hence the bottom part corresponds to a region X(t) =
of accretion of the rolling grains due to the wall located at s Vyp™

Uup

(L—vt). (43)
U
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TABLE II. Avalanche in a closed cell: different expressionsR)andE. Note that two different cases (,>v or v ,<v) are possible
during act Ill.

Act Parameter Bottom part Central part Top part
| X 0 Uyt L—ut L
R X Ov ypt
v
5—2 (L—x)
v
~ v
h o— (Uupt_x) S(X—vypt) S(X—vypt)
Uup
I X 0 L—ot Uyt L
v v v
R X é{x(l—ﬂ))—vupt-l-ﬂ L} 5 —2(L—x)
v v v
~ v v
h d— (vyt—X) 8 — (vyt—X) S(Xx—v )
Uup Uup
If y 0 Lot b L
(Uup>v) T ( vt)
1% 1%
R % é{x(l— —“p) —vgtt = L} 0
v 1%
h 50 ( ) 50 ( ) S(L—x)
— (vt —Xx — (vt —X
Uup up Uup up
o x 0 TP (Lt vyt L
(Uup<l}) Uup_U ( v ) up
R 0 v v v
a{x(l——”p)—vupw—”p L} 5 —2(L—x)
v 1% 1%
I v
h S(L—x) S (vyt=X) S(X—vyt)
up

Whent runs fromr,, to 7q4=L/v, x5 sweeps the whole slope bottom The frozen region occupies the intervak@<Xs,
from top to bottom. Wheix,(t) reaches a given point, the whereX, is still given by Eq.(43). X now sweeps the slope
rolling amountR vanishes and the granular media freezes afrom bottom to top. Again, we find that the final slope is
this point. The end of the avalanche now takes placé at 6,— §.
=74, when the last rolling grains stop &t=0.

The frozen value of is given byh(x,ts(x)), wherety(x)
is the inverse function Ok4(t). Using Eq.(43), we get for
the frozen value oh A. Three simple checks

V. DISCUSSION

The experimental determination of the whole profiles

Nfroz(X) = S(L = X). (44 h(x,t) andR(x,t) on an avalanche represents a rather com-

Thus, contrary to the case of an open cell, the final adgle pfr);ofrfgc.i However, certain simple checks could easily be
's notthe neutral angle, but is smaller: P (@ With. an open cel] the loss of material measured by

0:=0,— . (45) R(0}) is easily obtained, for instance, by capacitance mea-

suremen{11]. Our predictions for this loss are described in
This small final angle is due to the wall at the bottom of theFig. 10. R(Ot) increases linearly up to a maximuRyax
container £=0): The rolling grains cannot fall out of the =AéL att=L/v and then decreases linearly, reaching O at
cell and must accumulate near the wall at the bottom of théhe final timer,=L(1/ + 1/v ). The integrated amount is
slope, thus reducing its final slope. 2

MEJ' R(O,t)dt=£ (46)

2. The casevp,<v 2v -’

When v,<v, the end of act Il occurs at a timey
=L/v and corresponds to the downhill front reaching theUnfortunately, the attention in Ref11] was focused mainly
bottom end(see Fig. 9. Act Il corresponds to the interval on the reproducibility oM, but (apparently the value of\
Tq<t<7y,; during this time, the system freezé®m the and the shape d’(0t) were not analyzed in detail.
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R R(x =0
X )l

AL - -

0 Xd L 0 L/v Te

! FIG. 10. Flux profile predicted at the bottom of an open cell.
The maximumR,,,,=\4dL is obtained fort=L/v.

Thus the notion of an angle of repose is not universal. The
result for closed cell;=6,— 6 was already predicted in
Ref. [12], where we proposed a qualitative discussion of
thick avalanches. The dynami¢sased on a simplified ver-
sion of BCPE's equationsvas unrealistidtoo fasj, but the
. = T conclusion ond; was obvious: In a closed cell, the material

° that starts at the top has to be stored at the bottom part and

FIG. 8. Closed cell act Ill. The case,>v. A frozen patch, this leads to a decrease in slope.
where the avalanche is terminated, grows from the top; in this Some recent experiments seem to indicate that indeed the
patch, the final slope ig;= 6,— 6. angle of repose is not univerdd3,14. More experimental

work will be needed, however, in order to check more pre-

(b) With a closed cell a simple observable is the rise of Cisely our predictions. For a detailed discussion, see the re-

the height at the bottorn(0t). This is predicted to increase cent work of Boutreuf15]. _ o _
linearly with time, (d) One major unknown of our discussion is the ratio

vyp/v. We already pointed out that this may differ for dif-
~ ferent types of grains. Qualitative observations on a closed
h(0,t)=h(0}t)=évt, (47)  cell would be very useful here: If in its late stag@st 111)
the avalanche first freezes at the top, which meags v. If
up tot=L/v, and to remain constant after. Similar measuret freezes from the bottomy ,<v. If it does more complex
ments(both for open or closed cejlsould be done at the top things, this means that our model is wrong.
point, givingh(L,t).

(c) A crucial parameter is the final angle;. In our
model, this angle is the same all along the slope. For an open
cell, it is equal to the neutral angl, . For a closed cell, it is 1. Deterministic description
smaller  6;= 6,— 6= Opax—20.

B. Limitation of the present model

The avalanche starts automatically &= 04t ¢
(= Omax in the macroscopic limjitand sweeps the whole sur-
A face. In the open cell systentwith slowly rotating drumg
one finds experimentally a nearly periodic set of avalanche
spikes, suggesting that,,,, is well defined. However, the
amplitude(and the durationof these spikes varigdl 1]: It
may be that some avalanches do not start from the top. We
can only pretend to represent the full avalanches.
x What is the reason for these statistical featur@sDis-
0 | L parity in grain size tends to generate spatial inhomogeneities
after a certain number of ruris the simplest cases, the large
! grains roll further down and accumulate near the walis)
Cohesive forces may be present:. They tend to deform the
‘ final profiles, with ad(x) that is not constant in spacéii)
| Parameters such a,,, (or 6,) may depend on sample his-
tory.

R

2. Regions of small R

For instance, in a closed celR(x,t)—0 for x—0. A

= > complete solution in the vicinity dR=0 requires more com-

plex equations, interpolating between BCPE’s and our linear
FIG. 9. Closed cell act Il §,,<v). Here a frozen patch grows Set of equations, as sketched in Efi6). We have indeed

from the bottomwhere the final slope is agaify= 6,— &. investigated this point and found some solutions valid for all
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R near a stopping wall. This shall be described elsewhere. ttention on the “thick” case, but this possible distinction
does not seem to alter significantly the macroscopic resultsetween thick and thin should be kept in mind.
described here.
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